508 research outputs found

    Energy Efficient Engine: Flight propulsion system final design and analysis

    Get PDF
    The Energy Efficient Engine (E3) is a NASA program to create fuel saving technology for future transport engines. The Flight Propulsion System (FPS) is the engine designed to achieve E3 goals. Achieving these goals required aerodynamic, mechanical and system technologies advanced beyond that of current production engines. These technologies were successfully demonstrated in component rigs, a core engine and a turbofan ground test engine. The design and benefits of the FPS are presented. All goals for efficiency, environmental considerations, and economic payoff were met. The FPS has, at maximum cruise, 10.67 km (35,000 ft), M0.8, standard day, a 16.9 percent lower installed specific fuel consumption than a CF6-50C. It provides an 8.6 percent reduction in direct operating cost for a short haul domestic transport and a 16.2 percent reduction for an international long distance transport

    A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair

    Get PDF
    Congenital heart defects are present in 8 of 1000 newborns and palliative surgical therapy has increased survival. Despite improved outcomes, many children develop reduced cardiac function and heart failure requiring transplantation. Human cardiac progenitor cell (hCPC) therapy has potential to repair the pediatric myocardium through release of reparative factors, but therapy suffers from limited hCPC retention and functionality. Decellularized cardiac extracellular matrix hydrogel (cECM) improves heart function in animals, and human trials are ongoing. In the present study, a 3D-bioprinted patch containing cECM for delivery of pediatric hCPCs is developed. Cardiac patches are printed with bioinks composed of cECM, hCPCs, and gelatin methacrylate (GelMA). GelMA-cECM bioinks print uniformly with a homogeneous distribution of cECM and hCPCs. hCPCs maintain >75% viability and incorporation of cECM within patches results in a 30-fold increase in cardiogenic gene expression of hCPCs compared to hCPCs grown in pure GelMA patches. Conditioned media from GelMA-cECM patches show increased angiogenic potential (>2-fold) over GelMA alone, as seen by improved endothelial cell tube formation. Finally, patches are retained on rat hearts and show vascularization over 14 d in vivo. This work shows the successful bioprinting and implementation of cECM-hCPC patches for potential use in repairing damaged myocardium

    Microwave absorption of patterned arrays of nanosized magnetic stripes with different aspect ratios

    Get PDF
    Arrays consisting of nanosized stripes of Permalloy with different length-to-width ratios have been fabricated using electron beam nanolithography, magnetron sputtering, and lift-off process. These stripes have a thickness of 100 nm, a width of 300 nm, and different lengths ranging from 300 nm to 100 μm. The stripes are separated by a distance of 1 μm. Magnetization hysteresis loops were measured using a superconducting quantum interference device susceptometer. Microwave absorption at 9.8 GHz was determined by means of ferromagnetic resonance technique. The dependence of the resonant field on the angle between the nanostructure and the in-plane dc magnetic field indicates the presence of uniaxial magnetic anisotropy associated with the aspect ratio of the stripes. A maximum change of the resonant field of 1600 Oe was observed in the longest stripes, yet it was only 200 Oe for square shaped stripes. The linewidth of the resonant curve varied with the angle, in the range from 120 to 300 Oe. Most of the ferromagnetic resonance spectra exhibited multiple resonant peaks due to dimensional confinement of spin waves in the nanosized stripes. The maximum squareness of the magnetization hysteresis loop was for the field applied along the stripes, but the coercivity did not have a monotonic angular dependence as expected from the Stoner-Wohlfarth model for coherent magnetization rotation of the systems with uniaxial anisotropy

    Computer Microvision for Microelectromechanical Systems

    Get PDF
    Contains table of contents for Section 3 and reports on five research projects.Charles S. Draper Laboratory Contract DL-H-496015Defense Advanced Research Project Agency Grant F30602-97-2-0106W.M. Keck Foundation Career Development ProfessorshipAlfred P. Sloan Foundation Instrumentation Gran

    Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the mega-diverse insect order Lepidoptera (butterflies and moths; 165,000 described species), deeper relationships are little understood within the clade Ditrysia, to which 98% of the species belong. To begin addressing this problem, we tested the ability of five protein-coding nuclear genes (6.7 kb total), and character subsets therein, to resolve relationships among 123 species representing 27 (of 33) superfamilies and 55 (of 100) families of Ditrysia under maximum likelihood analysis.</p> <p>Results</p> <p>Our trees show broad concordance with previous morphological hypotheses of ditrysian phylogeny, although most relationships among superfamilies are weakly supported. There are also notable surprises, such as a consistently closer relationship of Pyraloidea than of butterflies to most Macrolepidoptera. Monophyly is significantly rejected by one or more character sets for the putative clades Macrolepidoptera as currently defined (<it>P </it>< 0.05) and Macrolepidoptera excluding Noctuoidea and Bombycoidea sensu lato (<it>P </it>≤ 0.005), and nearly so for the superfamily Drepanoidea as currently defined (<it>P </it>< 0.08). Superfamilies are typically recovered or nearly so, but usually without strong support. Relationships within superfamilies and families, however, are often robustly resolved. We provide some of the first strong molecular evidence on deeper splits within Pyraloidea, Tortricoidea, Geometroidea, Noctuoidea and others.</p> <p>Separate analyses of mostly synonymous versus non-synonymous character sets revealed notable differences (though not strong conflict), including a marked influence of compositional heterogeneity on apparent signal in the third codon position (nt3). As available model partitioning methods cannot correct for this variation, we assessed overall phylogeny resolution through separate examination of trees from each character set. Exploration of "tree space" with GARLI, using grid computing, showed that hundreds of searches are typically needed to find the best-feasible phylogeny estimate for these data.</p> <p>Conclusion</p> <p>Our results (a) corroborate the broad outlines of the current working phylogenetic hypothesis for Ditrysia, (b) demonstrate that some prominent features of that hypothesis, including the position of the butterflies, need revision, and (c) resolve the majority of family and subfamily relationships within superfamilies as thus far sampled. Much further gene and taxon sampling will be needed, however, to strongly resolve individual deeper nodes.</p

    The Sloan Digital Sky Survey Reverberation Mapping Project : investigation of continuum lag dependence on broad-line contamination and quasar properties

    Get PDF
    Funding: H.W.S., J.R.T., M.C.D., and L.B.F. acknowledge support from NSF grant CAREER-1945546, and with C.J.G. acknowledge support from NSF grants AST-2009539 and AST-2108668. C.R. acknowledges support from Fondecyt Regular grant 1230345 and ANID BASAL project FB210003. M.L.M.-A. acknowledges financial support from Millenium Nucleus NCN19-058 (TITANs).This work studies the relationship between accretion-disk size and quasar properties, using a sample of 95 quasars from the Sloan Digital Sky Survey Reverberation Mapping Project with measured lags between the g and i photometric bands. Our sample includes disk lags that are both longer and shorter than predicted by the Shakura and Sunyaev model, requiring explanations that satisfy both cases. Although our quasars each have one lag measurement, we explore the wavelength-dependent effects of diffuse broad-line region (BLR) contamination through our sample’s broad redshift range, 0.1 < z < 1.2. We do not find significant evidence of variable diffuse Fe ii and Balmer nebular emission in the rms spectra, nor from Anderson–Darling tests of quasars in redshift ranges with and without diffuse nebular emission falling in the observed-frame filters. Contrary to previous work, we do not detect a significant correlation between the measured continuum and BLR lags in our luminous quasar sample, similarly suggesting that our continuum lags are not dominated by diffuse nebular emission. Similar to other studies, we find that quasars with larger-than-expected continuum lags have lower 3000 Å luminosities, and we additionally find longer continuum lags with lower X-ray luminosities and black hole masses. Our lack of evidence for diffuse BLR contribution to the lags indicates that the anticorrelation between continuum lag and luminosity is not likely to be due to the Baldwin effect. Instead, these anticorrelations favor models in which the continuum lag increases in lower-luminosity active galactic nuclei, including scenarios featuring magnetic coupling between the accretion disk and X-ray corona, and/or ripples or rims in the disk.Publisher PDFPeer reviewe

    The Sloan Digital Sky Survey Reverberation Mapping Project: Investigation of Continuum Lag Dependence on Broad-Line Contamination and Quasar Properties

    Full text link
    This work studies the relationship between accretion-disk size and quasar properties, using a sample of 95 quasars from the SDSS-RM project with measured lags between the gg and ii photometric bands. Our sample includes disk lags that are both longer and shorter than predicted by the \citet{SS73} model, requiring explanations which satisfy both cases. Although our quasars each have one lag measurement, we explore the wavelength-dependent effects of diffuse broad line region (BLR) contamination through our sample's broad redshift range, 0.1<z<1.20.1<z<1.2. We do not find significant evidence of variable diffuse \FeII\ and Balmer nebular emission in the root-mean-square (RMS) spectra, nor from Anderson-Darling tests of quasars in redshift ranges with and without diffuse nebular emission falling in the observed-frame filters. Contrary to previous work, we do not detect a significant correlation between measured continuum and BLR lags in our luminous quasar sample, similarly suggesting that our continuum lags are not dominated by diffuse nebular emission. Similar to other studies, we find that quasars with larger-than-expected continuum lags have lower 3000~\AA\ luminosity, and we additionally find longer continuum lags with lower X-ray luminosity and black hole mass. Our lack of evidence for diffuse BLR contribution to the lags indicates that the anti-correlation between continuum lag and luminosity is not likely to be due to the Baldwin effect. Instead, these anti-correlations favor models in which the continuum lag increases in lower-luminosity AGN, including scenarios featuring magnetic coupling between the accretion disk and X-ray corona, and/or ripples or rims in the disk.Comment: 15 pages, 10 figure

    Auditory Physiology

    Get PDF
    Contains reports on one research projects split into ten sections.National Institutes of Health (Grant 5 P01 NS13126)National Institutes of Health (Grant 5 RO1 NS18682)National Institutes of Health (Grant 5 RO1 NS20322)National Institutes of Health (Grant 5 RO1 NS20269)National Institutes of Health (Grant 5 PO1 NS23734)National Institutes of Health (Grant 5 T32 NS07047)Symbion, Inc

    Oil Palm Research in Context: Identifying the Need for Biodiversity Assessment

    Get PDF
    Oil palm cultivation is frequently cited as a major threat to tropical biodiversity as it is centered on some of the world's most biodiverse regions. In this report, Web of Science was used to find papers on oil palm published since 1970, which were assigned to different subject categories to visualize their research focus. Recent years have seen a broadening in the scope of research, with a slight growth in publications on the environment and a dramatic increase in those on biofuel. Despite this, less than 1% of publications are related to biodiversity and species conservation. In the context of global vegetable oil markets, palm oil and soyabean account for over 60% of production but are the subject of less than 10% of research. Much more work must be done to establish the impacts of habitat conversion to oil palm plantation on biodiversity. Results from such studies are crucial for informing conservation strategies and ensuring sustainable management of plantations

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction and reports on six research projects.Health Sciences FundNational Institutes of Health Grant 5 R01 DC00194National Institutes of Health Grant 8 P01 DC00119National Institutes of Health Grant 5 R01 DC00473National Institutes of Health Grant 5 R01 DC00238National Institutes of Health Grant 5 T32 DC00006National Institutes of Health Grant 5 P01 DC00361National Institutes of Health Grant 5 R01 DC00235Peoples Republic of China FellowshipUnisys Corporation Doctoral FellowshipWhitaker Health Sciences Fellowshi
    • …
    corecore